

AGENDA

- > Tom: Barrier Markets, Shelf Life Testing
- > Francesco: OPP Barriers, Challenges and Solutions
- > Chris: Film Recycling and Barriers in Stand-Up Pouch Packaging
- > Questions

HIGH BARRIER FILM MARKET

GLOBAL DEMAND FOR HIGH BARRIER FLEXIBLE FILMS FOR FOOD PACKAGING 2010-2020

source: AMI CONSULTING					Growth rates
(K ton)	2010	2015	2016	2020	2015-2020
Metallized	287.0	419.0	454.1	633.7	8.6 %
EVOH	539.9	707.0	745.3	930.5	5.6 %
PVdC	252.0	270.6	273.7	285.9	1.1 %
AlOx/SiOx	14.4	17.9	18.7	22.2	4.4 %
Other	6.1	8.1	8.6	10.4	5.3 %
TOTAL	1099.3	1422.6	1500.4	1882.9	5.8 %

New market Opportunity: Global demand for high barrier food packaging film is increasing.

Raw Substrate Variability by Aspect

g/100in²/day **WATER BARRIER BOPP (100 Ga)** 0.3 Polyethylene (1.0 Mil LDPE) Polyester (48 Ga)

Raw Substrate Variability by Aspect

OXYGEN	cc/100in ² /day		
Polyester (48 Ga)		< 12	
BOPP (100 Ga)		100	
Polyethylene (1.0 Mil LDPE)		550	

Choosing the Right Barrier

- □ Produce
 - -High Water Barrier
 - -Low Oxygen Barrier
 - OPP / PE Film Structure
- □ Dried Fruit / Nuts / Snacks / Liquids
 - Enhanced Barrier Properties Required

Choosing the Right Barrier

Perform Shelf Life Testing

- Use the Opportunity to Build the Relationship
- Opportunity for Converter and Brand Owner to Work Together to Maximize Product Life
- Brand Owners and Customers will be the SL Arbiters
- Establish a Testing Protocol;
 Existing Relatively Easy to Verify Barrier Numbers
 - New Choose Starting Pt Based on Product Pkg History
 - ie ... for nut packaging .20 OTR / .20 WVTR
 - Package Enough Product to test every couple weeks for 12 40 weeks.
- BO / Conv Conversation Regarding Next Steps

HIGH BARRIER FILM MARKET: Requirements

Primary Requests from End users/Brand owners:

Natural, fresh products without added preservatives

- □ Oxygen plays a major role in sustaining food's appearance
- Moisture can lead to rapid spoilage or mold
- Overexposure to **light** can cause deterioration of nutritional content and appearance
- Migration of mineral oil components from the cardboard packaging materials into various foodstuffs.
- product flavor and aroma retention

HIGH BARRIER FILM Driving Forces

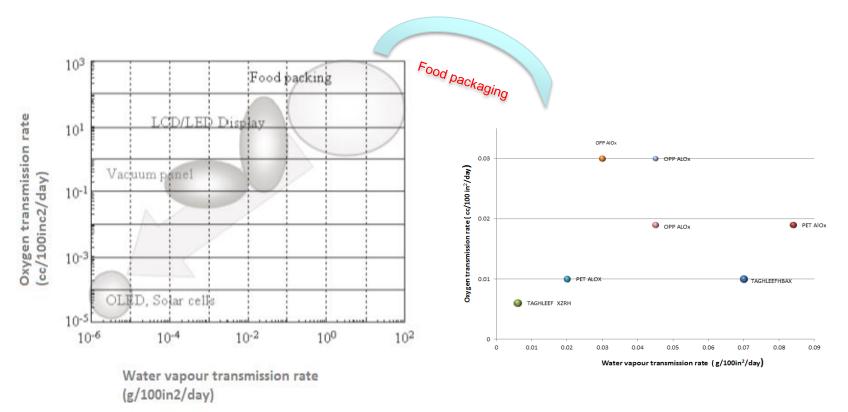
- Product Visibility
- Consumer Appeal
- Product
 Identification

✓ Manufacturing

- Consistency & resistance to handling/converting
- Product Inspection
 - Visual
 - Metal inspection

✓ <u>Technologies</u>

- AIOx
- Al Metallized
- Al Foil
- Surface Coating

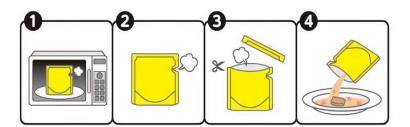


HIGH BARRIER is a MEGATREND

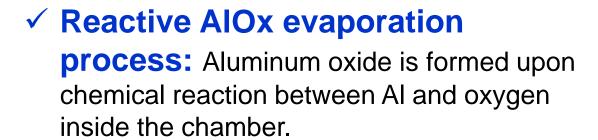
It's for more than just food there:

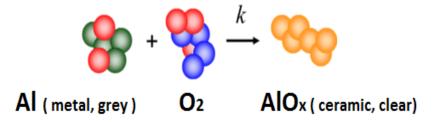
There are a plethora of non-food products that are being affected by environmental factors just as much as food – and their packaging is changing as a result. *Barrier has to be customized.*

BUILDING THE BARRIER



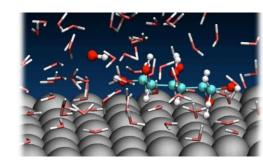
Metallized Film: Market is driven by availability of the technology, relative cost, and growth in snack food


> AIOx Coated Film: Market is driven by product visibility, microwave-ability and easier metal detection



BUILDING THE BARRIER

✓ Vacuum Aluminum metallizing process: Aluminum is melted @ 2730° F and forms a vapor cloud above the boat. As the substrate passes over this active area a thin Al layer is deposited onto the film.


CHALLENGE & SOLUTION (AI)

✓ Al is easily removed after handling/converting, barrier decrease

✓ Substrate chemistry influences Al deposition and barrier performance

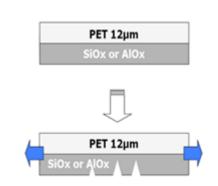
ALLENGE

Category	Film Type	WVTR g/100in²	O2TR cc/100in ²	
AI BOPP	MT	0.01	< 6	
	НМТ	0.006	0.95	
Al Extendo®	ZUA	0.006	0.6	
Metallized- High energy polymer OPP	HZRH	0.006	0.006	

TAGHLEEF Metalized -High energy polymer

Outstanding water, oxygen, aroma and mineral oil barrier

CHALLENGES & SOLUTIONS (Clear



AlOx layer can be damaged upon two mechanisms:

barrier)

- ✓ Elongation: Standard AlOx looses barrier above 1% elongation
- ✓ Abrasion: Direct contact with guide rollers resulting in scratches, i.e. loss of barrier.

Category	Film Type	WVTR g/100in²	O2TR cc/100in ²	
	UHX	0.2	0.2	
OPP Clear barrier	HBTX	0.16	N/A	
	HBAX	0.06	0.006	

CHALLENGES & SOLUTIONS (Clear

barrier)

SUBSTRATE	BARRIER VALUE		BARRIER VALUE after 10x Gelbo		Post Gelbo % barrier variation	
	WVTR g/100in ²	OTR cc/100in ²	WVTR g/100in ²	OTR cc/100in ²	WVTR	OTR
EXTENDO® HBAX	0.11	0.02	0.12	0.03	13	8
Film A	0.06	0.03	0.08	0.67	23	96
Film B	0.10	0.03	0.13	0.14	23	79

TAGHLEEF EXTENDO® HBAX

□ Outstanding and durable barrier retention through processing and handling, *HBAX can stand the abuse.*

BUILDING THE BARRIER

Right chemistry for the right solution

✓ **Surface** A substrate surface should be smooth with preferred chemical entities, surface characteristics dominate coating nucleation.

✓ Coating One way of further enhancing the barrier properties of ceramic coated films (e.g. AlOx) is to deposit an additional organic topcoat onto the AlOx layer.

